Geometric Hermite interpolation by a family of intrinsically defined planar curves
نویسندگان
چکیده
This paper proposes techniques of interpolation of intrinsically defined planar curves to Hermite data. In particular, a family of planar curves corresponding to which the curvature radius functions are polynomials in terms of the tangent angle are used for the purpose. The Cartesian coordinates, the arc lengths and the offsets of this type of curves can be explicitly obtained provided that the curvature functions are known. For given G1 or G2 boundary data with or without prescribed arc lengths the free parameters within the curvature functions can be obtained just by solving a linear system. By choosing low order polynomials for representing the curvature radius functions, the interpolating curves can be spirals that have monotone curvatures or fair curves with small numbers of curvature extremes. Several examples of shape design or curve approximation using the proposed method are presented.
منابع مشابه
An Optimal G^2-Hermite Interpolation by Rational Cubic Bézier Curves
In this paper, we study a geometric G^2 Hermite interpolation by planar rational cubic Bézier curves. Two data points, two tangent vectors and two signed curvatures interpolated per each rational segment. We give the necessary and the sufficient intrinsic geometric conditions for two C^2 parametric curves to be connected with G2 continuity. Locally, the free parameters w...
متن کاملAlgorithm for Geometric
We show that the geometric Hermite interpolant can be easily calculated without solving a system of nonlinear equations. In addition we give geometric conditions for the existence and uniqueness of a solution to the interpolation problem. Finally we compare geometric Hermite interpolation with standard cubic Hermite interpolation. x1 Introduction Since parametric representations of curves are n...
متن کاملOn the variety of planar spirals and their applications in computer aided design
In this paper we discuss the variety of planar spiral segments and their applications in objects in both the real and artificial world. The discussed curves with monotonic curvature function are well-known in geometric modelling and computer aided geometric design as fair curves, and they are very significant in aesthetic shape modelling. Fair curve segments are used for two-point G1 and G2 Her...
متن کاملGeometric Hermite interpolation with maximal orderand smoothness
We conjecture that splines of degree n can interpolate points on a smooth curve in R m with order of contact k ? 1 = n ? 1 + b(n ? 1)=(m ? 1)c at every n-th knot. Moreover, this Geometric Hermite Interpolant (GHI) has the optimal approximation order k + 1. We give a proof of this conjecture for planar quadratic spline curves and describe a simple construction of curvature continuous quadratic s...
متن کاملTopological criterion for selection of quintic Pythagorean-hodograph Hermite interpolants
A topological approach to identifying the “good” interpolant among the four distinct solutions to the first–order Hermite interpolation problem for planar quintic Pythagorean–hodograph curves is presented. An existence theorem is proved, together with a complete analysis of uniqueness/non– uniqueness properties. A simple formula for finding the “good” solution, without appealing to curve fairne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computer-Aided Design
دوره 77 شماره
صفحات -
تاریخ انتشار 2016